2019: A Space Organoid

July 21, 2019


UC San Diego researchers plan to send human brains-in-a-dish to the International Space Station to assess microgravity’s effect on neural development — and maybe prospects for life beyond Earth

Boards Patch 2019

July 08, 2019 | Jackie Carr

From the science fiction of Isaac Asimov and Arthur C. Clarke to the cinematic worlds of Star Wars and galaxies far, far away, humans have imagined life in space. But among the myriad challenges to colonizing other worlds lie fundamental questions of biology: Can a human embryo grow naturally outside the nurturing embrace of Earth? Will the brain form normally? How does weightlessness alter the basic, gravity-defined rules of human development? 

A research team from University of California San Diego, led by Alysson R. Muotri, PhD, seeks to boldly go where the first answers may be found: Launching a payload of stem cell-derived human brain organoids to the International Space Station (ISS) orbiting almost 250 miles above Earth, where researchers will document how these masses of cells organize into the beginnings of a functional brain.

The first-ever project of its type is dedicated to T. Denny Sanford, a longtime advocate of stem cell research whose partnership has supported Muotri’s work as well as several key research entities, including the Sanford Consortium for Regenerative Medicine and UC San Diego Sanford Stem Cell Clinical Center.

“On July 21, UC San Diego will partner with Space Tango to launch a payload of living brain organoids into space,” said Erik Viirre, MD, PhD, professor of neurosciences and director of the Arthur C. Clarke Center for Human Imagination. “The study results will have enormous implications for space colonization and human health. We hope to determine if humanity can reach into the broader cosmos.”

“This groundbreaking experiment will evaluate more than 100 brain organoids, also known as ‘mini-brains,’ while in orbit,” said Muotri, professor in the UC San Diego School of Medicine Departments of Pediatrics and Cellular and Molecular Medicine. “We will be able to continuously observe the formation of the neural tube, including cell migration, cell-cell interaction, cell division and death. This will be the first in a series of space flights to help us understand the intricacies of brain development, both in weightlessness and on Earth.”

Click here for the full story!